1N4148WS Silicon Epitaxial Planar Switching Diode

Features

- SOD-323 package
- Fast switching
- These diodes are also available in other case style including the DO-35 case with the type designation 1N4148, the MiniMELF case with the type designation LL4148 and the MicroMELF case with the type designation MCL4148.

PINNING

PIN	DESCRIPTION
1	Cathode
2	Anode

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Peak Reverse Voltage	V_{RM}	100	V
Reverse Voltage	V_{R}	75	V
Average Rectified Forward Current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	150	mA
Surge Forward Current $\left(\mathrm{t}<1 \mathrm{~s}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{FSM}}$	350	mA
Power Dissipation	$\mathrm{P}_{\text {tot }}$	200	mW
Thermal Resistance from Junction to Ambient Air	$\mathrm{R}_{\text {өJA }}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
Reverse Breakdown Voltage at $I_{R}=1 \mu \mathrm{~A}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	75	-	V
$\begin{aligned} & \text { Forward Voltage } \\ & \text { at } I_{F}=1 \mathrm{~mA} \\ & \text { at } I_{F}=10 \mathrm{~mA} \\ & \text { at } I_{F}=50 \mathrm{~mA} \\ & \text { at } I_{F}=150 \mathrm{~mA} \end{aligned}$	V_{F}		$\begin{gathered} 0.715 \\ 0.855 \\ 1 \\ 1.25 \end{gathered}$	V
$\begin{aligned} & \text { Peak Reverse Current } \\ & \text { at } \mathrm{V}_{\mathrm{R}}=75 \mathrm{~V} \\ & \text { at } \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} \\ & \text { at } \mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \text { at } \mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {R }}$		$\begin{gathered} 1 \\ 25 \\ 50 \\ 30 \end{gathered}$	$\mu \mathrm{A}$ nA $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\begin{aligned} & \text { Total Capacitance } \\ & \text { at } \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\text {T }}$	-	2	pF
Reverse Recovery Time at $\mathrm{I}_{\mathrm{r}}=0.1 \mathrm{XI} \mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	t_{rr}	-	4	ns

Reverse capacitance vs. reverse voltage

Dynamic forward resistance vs. forward current

Amissible repetitive peak forward current vs. pulse duration

PACKAGE OUTLINE

Plastic surface mounted package; 2 leads

