电容器是电路中最基本的元件之一,利用电容滤除电路上的高频骚扰和对电源解耦是所有电路设计人员都熟悉的。但是,随着电磁干扰问题的日益突出,特别是干扰频率的日益提高,由于不了解电容的基本特性而达不到预期滤波效果的事情时有发生。下面将介绍一些使用电容器抑制电磁干扰时需要注意的事项。
电容器
两个相互靠近的导体,中间夹一层不导电的绝缘介质,就构成了电容器。当电容器的两个极板之间加上电压时,电容器就会储存电荷。电容器的电容量在数值上等于一个导电极板上的电荷量与两个极板之间的电压之比。电容器的电容量的基本单位是法拉(F)。在电路图中通常用字母C表示电容元件。电容器在调谐、旁路、耦合、滤波等电路中起着重要的作用。晶体管收音机的调谐电路要用到它,彩色电视机的耦合电路、旁路电路等也要用到它。
电容器是基本的滤波器,在低通滤波器中作为旁路器件使用。利用它的阻抗随频率升高而降低的特性,起到对高频干扰旁路的作用。但是,在实际使用中一定要注意电容器的非理想性。
1.电容器实际等效电路
实际电容器的电路模型如图1所示,它是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网路。电感分量是由引线和电容结构所决定的,电阻是介质材料所固有的。电感分量是影响电容频率特性的主要指标,因此,在分析实际电容器的旁路作用时,用LC串联网络来等效。
图1 实际电容器的等效电路
2.对滤波特性的影响
实际电容器的特性如图2所示,当角频率为1/LC时,会发生串联谐振,这时电容的阻抗最小,旁路效果最好。超过谐振点之后,电容器的阻抗特性呈现电感阻抗的特性——随频率的升高而增加,旁路效果开始变差。这是,作为旁路器件使用的电容器就开始失去旁路作用。
图2 实际电容器的频率特性
理想电容的阻抗是随着频率的升高而降低,而实际电容的阻抗具有如图2所示的频率特性,在频率较低时,呈现电容性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR。在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性。在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失。
电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果差。ESL除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低。因此在实际工程中,要使电容器的引线尽量短,电容器的正确安装方法和不正确安装方法如图3所示。
图3 滤波电容的正确安装方法与错误安装方法
根据LC电路串联的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。许多人认为电容器的容值越大,滤波效果越好,这是一种误解。电容越大对低频干扰的效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差。表1是不同容量瓷片电容的自谐振频率,电容的引线长度是1.6mm。
尽管从滤除高频噪声的角度看,不希望有电容谐振,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。
以上就是电容器抑制电磁干扰要注意的事项。在电磁兼容设计中使用的电容要求谐振频率尽量高,这样才能够在较宽的频率范围内起到有效得滤波作用。提高谐振频率的方法有两个,一个是尽量缩短引线的长度,另一个是选用电感较小的种类。
〈烜芯微/XXW〉专业制造二极管,三极管,MOS管,桥堆等,20年,工厂直销省20%,上万家电路电器生产企业选用,专业的工程师帮您稳定好每一批产品,如果您有遇到什么需要帮助解决的,可以直接联系下方的联系号码或加QQ/微信,由我们的销售经理给您精准的报价以及产品介绍
联系号码:18923864027(同微信)
QQ:709211280