MOSFET以及IGBT绝缘栅双极性大功率管等器件的源极和栅极之间是绝缘的二氧化硅结构,直流电不能通过,因而低频的表态驱动功率接近于零。但是栅极和源极之间构成了一个栅极电容Cgs,因而在高频率的交替开通和需要关断时需要一定的动态驱动功率。
小功率MOSFET的Cgs一般在10-100pF之内,对于大功率的绝缘栅功率器件,由于栅极电容Cgs较大。一般在1-100nF之间,因而需要较大的动态驱动功率。更由于漏极到栅极的密勒电容Cdg,栅极驱动功率往往是不可忽视的。
因IGBT具有电流拖尾效应,在关断时要求更好的抗干扰性,需要负压驱动。MOSFET速度比较快,关断时可以没有负压,但在干扰较重时,负压关断对于提高可靠性有很大好处。
ADuM4120栅极驱动器
隔离驱动技术
1、光电耦合器隔离的驱动器
光电耦合器的优点是体积小巧,缺点是:A、反应较慢,因而具有较大的延迟时间(高速型光耦一般也大于300ns);B、光电耦合器的输出级需要隔离的辅助电源供电。
2、无源变压器驱动
用脉冲变压器隔离驱动绝缘栅功率器件有三种方法:无源、有源和自给电源驱动。无源方法就是用变压器次级的输出直流驱动绝缘栅器件,这种方法很简单也不需要单独的驱动电源。
缺点是输出波型失真较大,因为绝缘栅功率器件的栅源电容Cgs一般较大。减小失真的办法是将初级的输入信号改为具有一定功率的大信号,相应脉冲变压器也应取较大体积,但在大功率下,一般仍不令人满意。
另一缺点是当占空比变化较大时,输出驱动脉冲的正负幅值变化太大,可能导致工作不正常,因此只适用于占空比变化不大的场合。
3、有源变压器驱动
有源方法中的变压器只提供隔离的信号,在次级另有整形放大电路来驱动绝缘栅功率器件,当然驱动波形较好,但是需要另外提供单独的辅助电源供给放大器。而辅助电源如果处理不当,可能会引进寄生的干扰。
4、调制型自给电源的变压器隔离驱动器
采用自给电源技术,只用一个变压器,既省却了辅助电源,又能得到较快的速度,当然是不错的方法。目前自给电源的产生有调制和从分时两种方法。
调制技术是比较经典的方法,即对PWM驱动信号进行高频(几个MHZ以上)调制,并将调制信号加在隔离脉冲变压器初级,在次级通过直接整流得到自给电源,而原PWM调制信号则需经过解调取得,显然,这种方法并不简单。调制式的另一缺点是PWM的解调要增加信号的延时,调制方式适于传递较低频率的PWM信号。
5、分时型自给电源的变压器隔离驱动器
分时技术是一种较新的技术,其原理是,将信号和能量的传送采取分别进行的方法,即在变压器输入PWM信号的上升和下降沿传递信息,在输入信号的平顶阶段传递驱动所需要的能量。
由于在PWM信号的上升和下降沿只传递信号,基本没有能量传输,因而输出的PWM脉冲的延时和畸变都很小,能获得陡峭的驱动输出脉冲。分时型自给电源驱动器的不足是用于低频时变压器的体积较大,此外由于自给能量的限制,驱动超过300A/1200V的IGBT比较困难。
下图中显示了ADuM4121栅极驱动器的典型设置,采用半桥配置,采用功率MOSFET,适用于电源和电机驱动应用。在这样的设置中,如果两个Q1和 Q2同时打开,由于电源和接地端子短路,有可能击穿。这可能会永久损坏开关甚至驱动电路。为避免击穿,必须在系统中插入死区时间,以便大大降低两个开关同时打开的可能性。
在死区时间间隔内,两个开关的栅极信号都很低,因此,开关理想情况下处于关断状态。如果传播延迟偏差较低,则所需的死区时间较低,并且控制变得更加可预测。具有更低的偏斜和更低的死区时间,可实现更平稳、更高效的系统运行。
栅极 隔离 驱动
隔离:
它是系统中各种功能电路之间的电气分离,使得它们之间没有直接的传导路径可用。这允许单个电路具有不同的接地电位。信号和/或功率仍然可以使用电感、电容或光学方法在隔离电路之间传递。
对于具有栅极驱动器的系统,出于功能目的,隔离可能是必要的,也可能是一项安全要求。在上图中,我们可以有 V总线数百伏特,数十安培电流通过 Q1或 Q2在给定时间。
如果该系统出现任何故障,如果损坏仅限于电子元件,则可能不需要安全隔离,但如果控制侧有人为参与,则需要在高功率侧和低压控制电路之间进行电气隔离。它提供高压侧任何故障保护,因为隔离栅阻止电力到达用户,尽管组件损坏或故障。
〈烜芯微/XXW〉专业制造二极管,三极管,MOS管,桥堆等,20年,工厂直销省20%,上万家电路电器生产企业选用,专业的工程师帮您稳定好每一批产品,如果您有遇到什么需要帮助解决的,可以直接联系下方的联系号码或加QQ/微信,由我们的销售经理给您精准的报价以及产品介绍
联系号码:18923864027
QQ:709211280