MOS管最大持续电流如何确定?
MOS管最大持续电流=MOS耐电压/MOS内阻值。
该额定电流应为负载在所有条件下可承受的最大电流。与电压情况类似,即使系统产生尖峰电流,也要确保所选的MOS晶体管能够承受此额定电流。
考虑的两个当前条件是连续模式和脉冲尖峰。在连续导通模式下,MOS晶体管处于稳定状态,此时电流继续流经器件。
脉冲尖峰是其中大量浪涌(或尖峰电流)流过设备的脉冲尖峰。确定了这些条件下的最大电流后,只需选择可承受该最大电流的设备即可。
选择额定电流后,还必须计算传导损耗。在实际情况下,MOS晶体管不是理想的器件,因为在传导过程中会损失电能,这称为传导损耗。
MOS管最大持续电流如何计算?
1. 是用N沟道还是P沟道 。选择好MOS管器件的第一步是决定采用N沟道还是P沟道MOS管。
在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。
当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。
根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。
就选择MOS管而言,必须确定漏极至源 极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。
我们须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。
不同应用的额定 电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。
2. 确定MOS管的额定电流。该额定电流应是负载在所有情况下能够承受的最大电流。
与电压的情况相似,确保所选的MOS管能承受这个额定电流,即使在系统产生 尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。
在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电 流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。
选好额定电流后,还必须计算导通损耗。在实际情况 下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。
MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确 定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。
对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电 气参数变化可在制造商提供的技术资料表中查到。
3. 选择MOS管的下一步是系统的散热要求。须考虑两种不同的情况,即最坏情况和真实情况。
建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。
在MOS管的资料表上还有一些需要注意的测量数据;器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。
根据这个式子可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。我们已将要通过器件的最大电流,可以计算出不同温度下的RDS(ON)。
另外,还要做好电路板 及其MOS管的散热。雪崩击穿是指半导体器件上的反向电压超过最大值,并形成强电场使器件内电流增加。
晶片尺寸的增加会提高抗雪崩能力,最终提高器件的稳健性。因此选择更大的封装件可以有效防止雪崩。
4. 选择MOS管的最后一步是决定MOS管的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/ 源极及漏极/源极电容。
这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOS管的开关速度因此被降低,器件效率也下降。
为计算开关过 程中器件的总损耗,要计算开通过程中的损耗(Eon)和关闭过程中的损坏(Eoff)。
MOSFET开关的总功率可用如下方程表达:Psw= (Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。
〈烜芯微/XXW〉专业制造二极管,三极管,MOS管,桥堆等,20年,工厂直销省20%,上万家电路电器生产企业选用,专业的工程师帮您稳定好每一批产品,如果您有遇到什么需要帮助解决的,可以直接联系下方的联系号码或加QQ/微信,由我们的销售经理给您精准的报价以及产品介绍
联系号码:18923864027(同微信)
QQ:709211280