晶体管与MOS管并联理论:
(1)、晶体管具有负的温度系数,即当温度升高时,导通电阻会变小。
(2)、MOS管具有正的温度系数,即当温度升高时,导通电阻会逐渐变大。
相比于晶体管,MOS管的特性更加适合并联电路中的均流,因此当电路中电流很大时,一般会采用并联MOS管的方法来进行分流。采用MOS管进行电流的均流时,当其中一路电流大于另一路MOS管中的电流时,电流大的MOS管产生的热量多,从而引起导通电阻的增大,减少流过的电流;MOS管之间根据电流大小的不同来反复调节,最后可实现两个MOS管之间的电流均衡。
注:晶体管也可以通过并联来实现大电流的流通,但是此时需要通过在基极串接驱动电阻来解决各个并联晶体管之间的电流均衡问题。
晶体管(MOS管)并联注意事项:
(1)、各个晶体管(MOS管)的基极(栅极)不能直接相连,要分别串接驱动电阻进行驱动,以防止振荡。
(2)、要控制各个晶体管(MOS管)的开启时间和关断时间保持一致,因为如果不一致,先开启的管子或后关断的管子会因电流过大而击穿损坏。
(3)、为了以防万一,最好在各个晶体管(MOS)管的发射极(源极)串接均流电阻,当然这并非强制选项。
(4)、各个并联的晶体管(MOS管)之间要注意热耦合,因为电流集中在一方管子的主要原因就是由发热引起的。
晶体管(MOS管)并联应用:
(1)、功率开关MOSFET的集成IC芯片,其内部是将大量的小MOS管并联连接起来的,这样每一个MOS管单元中流过的电流很小,防止局部的电流集中(若电流局部集中,则器件就损坏),但是电路总体可以通过较大的电流,非常适合驱动电机等重负载设备。当然多个MOS管并联还可以改善高频特性,这已经成为目前功率开关MOS管的主要结构。
(2)、电池等供电设备是移动设备获取电力的主要来源之一,但是一般的高功率电池供电电流都非常大(功率使用可以达到100A),因此仅仅使用单MOS管作为开关器件还不能满足大电流的应用目的,这时多个MOS管并联便能大展身手了。
(3)、功率放大电路(射极输出电路)需要驱动较大功率的负载设备,这时单个晶体管(MOS管)的流通电流能力有限,远远实现不了大功率设备(100W,1000W等等)的驱动能力;而采用多管并联可以解决这一难题。
MOS管功率管并联需要考虑的要点
MOS管并联方法,为了使并联电路中每个MOS管尽可能的均流,在设计并联电路时需要考虑如下要素 :
1、饱和压降VDs或导通RDSon:对所有并联的MOS管而言 ,导通时其管压降是相同的,其结果必然是饱和电压小的MOS管先流过较大的电流 ,随着结温的升高,管压降逐渐增大,则流过管压降大的MOS管的电流又会逐渐增大,从而减轻管压降小的MOS管的工作压力。因此,从原理上讲,由于N沟道功率型MOS管的饱和压降VDs或导通电阻RDSon具有正的温度特性 ,是很适合并联的。
2、开启电压VGS(th):在同一驱动脉冲作用下 ,开启电压VGS(th)的不同,会引起MOS管的开通时刻不同,进而会引起先开通的MOS管首先流过整个回路的电流,如果此时电流偏大,不加以限制 ,则对MOS管的安全工作 造成威胁;
3、开通、关断延迟时间Td(on)、td(off);开通上升、关断下降时间tr、tf:同样,在同一驱动脉冲作用下,td(on)、td(off)、tr 、tf的不同 ,也会引起MOS管的开通/关断时刻不同,进而会引起先开通/后关断的MOS 管流过整个回路的电流,如果此时电流偏大,不加以限制,则同样对MOS 管的安全工作造成威胁。
4、驱动极回路的驱动输入电阻、等效输入 电容、等效输入电感等,均会造成引起MOS管的开通/关断时刻不同。
从上所述 ,可以看出,只要保证无论在开通、关断、导通的过程流过MOS管的电流均使MOS管工作在安全工作区内,则MOS管的安全工作得到保障。为此,本文提出一种MOS管的并联方法,着重于均流方面的研究,可有效的保证MOS管工作在安全工作区内,提高并联电路的工作可靠性。
MOS管的ID-VDS曲线,使用Excel的绘制折线图功能生成。该曲线清晰展示了有4只mos管的导通电阻小于其余的MOS管,这些MOS管工作时将流过更大的电流,易受损。因此将这四只MOS管换新后,16条ID-VDS曲线近乎完美重合,达到了并联使用要求。
烜芯微专业制造二极管,三极管,MOS管,桥堆等20年,工厂直销省20%,4000家电路电器生产企业选用,专业的工程师帮您稳定好每一批产品,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍