您好!欢迎光临烜芯微科技品牌官网!

深圳市烜芯微科技有限公司

ShenZhen XuanXinWei Technoligy Co.,Ltd
二极管、三极管、MOS管、桥堆

全国服务热线:18923864027

  • 热门关键词:
  • 桥堆
  • 场效应管
  • 三极管
  • 二极管
  • 晶体管工作原理-晶体管分类-分析全面晶体管工作原理大全
    • 发布时间:2020-02-17 13:45:11
    • 来源:
    • 阅读次数:
    晶体管工作原理-晶体管分类-分析全面晶体管工作原理大全
    电力晶体管
    电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。
    光晶体管
    光晶体管(phototransistor)由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益。光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(GaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。双极型光晶体管通常增益很高,但速度不太快,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),但缺点是光敏面积小,增益小(放大系数可大于10),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。这类器件可望在光电集成中得到应用。
    双极晶体管
    双极晶体管(bipolar transistor)指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。
    双极结型
    “双极”的含义是指其工作时电子和空穴这两种载流子都同时参与运动。双极结型晶体管(Bipolar Junction Transistor—BJT)又称为半导体三极管,它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN两种组合结构;外部引出三个极:集电极,发射极和基极,集电极从集电区引出,发射极从发射区引出,基极从基区引出(基区在中间);BJT有放大作用,重要依靠它的发射极电流能够通过基区传输到达集电区而实现的,为了保证这一传输过程,一方面要满足内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小,另一方面要满足外部条件,即发射结要正向偏置(加正向电压)、集电结要反偏置;BJT种类很多,按照频率分,有高频管,低频管,按照功率分,有小、中、大功率管,按照半导体材料分,有硅管和锗管等;其构成的放大电路形式有:共发射极、共基极和共集电极放大电路。
    场效应晶体管
    “场效应”的含义是这种晶体管的工作原理是基于半导体的电场效应的。场效应晶体管(field effect transistor)利用场效应原理工作的晶体管,英文简称FET。场效应晶体管又包含两种主要类型:结型场效应管(Junction FET,缩写为JFET)和金属-氧化物半导体场效应管(Metal-Oxide Semiconductor FET,缩写为MOS-FET)。与BJT不同的是,FET只由一种载流子(多数载流子)参与导电,因此也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点。
    场效应就是改变外加垂直于半导体表面上电场的方向或大小,以控制半导体导电层(沟道)中多数载流子的密度或类型。它是由电压调制沟道中的电流,其工作电流是由半导体中的多数载流子输运。这类只有一种极性载流子参加导电的晶体管又称单极型晶体管。与双极型晶体管相比,场效应晶体管具有输入阻抗高、噪声小、极限频率高、功耗小,制造工艺简单、温度特性好等特点,广泛应用于各种放大电路、数字电路和微波电路等。以硅材料为基础的金属0-氧化物-半导体场效应管(MOSFET)和以砷化镓材料为基础的肖特基势垒栅场效应管(MESFET )是两种最重要的场效应晶体管,分别为MOS大规模集成电路和MES超高速集成电路的基础器件。
    静电感应
    静电感应晶体管SIT(StaticInductionTransistor)诞生于1970年,实际上是一种结型场效应晶体管。将用于信息处理的小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件。SIT是一种多子导电的器件,其工作频率与电力MOSFET相当,甚至超过电力MOSFET,而功率容量也比电力MOSFET大,因而适用于高频大功率场合,目前已在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等某些专业领域获得了较多的应用。
    但是SIT在栅极不加任何信号时是导通的,栅极加负偏压时关断,这被称为正常导通型器件,使用不太方便。此外,SIT通态电阻较大,使得通态损耗也大,因而SIT还未在大多数电力电子设备中得到广泛应用。
    单电子晶体管
    用一个或者少量电子就能记录信号的晶体管。随着半导体刻蚀技术和工艺的发展,大规模集成电路的集成度越来越高。以动态随机存储器(DRAM)为例,它的集成度差不多以每两年增加四倍的速度发展,预计单电子晶体管将是最终的目标。目前一般的存储器每个存储元包含了20万个电子,而单电子晶体管每个存储元只包含了一个或少量电子,因此它将大大降低功耗,提高集成电路的集成度。
    1989年斯各特(J.H.F.Scott-Thomas)等人在实验上发现了库仑阻塞现象。在调制掺杂异质结界面形成的二维电子气上面,制作一个面积很小的金属电极,使得在二维电子气中形成一个量子点,它只能容纳少量的电子,也就是它的电容很小,小于一个F(10~15法拉)。当外加电压时,如果电压变化引起量子点中电荷变化量不到一个电子的电荷,则将没有电流通过。直到电压增大到能引起一个电子电荷的变化时,才有电流通过。因此电流-电压关系不是通常的直线关系,而是台阶形的。这个实验在历史上第一次实现了用人工控制一个电子的运动,为制造单电子晶体管提供了实验依据。为了提高单电子晶体管的工作温度,必须使量子点的尺寸小于10纳米,目前世界各实验室都在想各种办法解决这个问题。有些实验室宣称已制出室温下工作的单电子晶体管,观察到由电子输运形成的台阶型电流——电压曲线,但离实用还有相当的距离。
    IGBT
    绝缘栅双极晶体管(Insulate-GateBipolarTransistor—IGBT)综合了电力晶体管(GiantTransistor—GTR)和电力场效应晶体管(PowerMOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。
    功率开关管
    功率开关管的种类很多,如巨型晶体管GTR、快速晶闸管SCR、门极可关断晶闸管GTO、功率场效应晶体管P- MOSFET和绝缘栅双极型晶体管IGBT等。其中,开关电源中经常使用的是P - MOSFET和IGBT。
    选择功率开关管时,应根据变换器类型、功率和可靠性等性能,确定功率开关管的耐压值和导通电流等参数。
    双极结型晶体管
    双极结型晶体管( BJT)是一种舣极型半导体器件,其中大容量的双极结型晶体管义称巨型晶体管( GTR),其内部有电子和空穴两种载流子。根据半导体类型的不同,BJT可以分为NPN型和PNP型两种,其中硅功率晶体管多为NPN型。在开关电源中1,BJT工作在开关状态,即工作在截止区或饱和区。BJT的开关时间对它的应用有较大的影n向,因此选用BJT时,应注意其开关频率。为了使BJT快速导通,缩短开通时间toff驱动电流必须具有—定幅值,且前沿足够陡峭并有。定过冲的止向驱动电流为加速BJT关断,缩短关断时间TOFF在关断前使BJt'处于临界饱和状态,基极反偏电流幅值足够大,并且加反向截止电压。
    此外,BJT的工作点是随电压和电流的不同而变化的,而一般厂家给出的参数是在特定条件且环境温度为+25度数值。当环境温度高于+25℃时,BJT的功率应适当降低。增大电压和电流余量,同时改善散热条件,可以提高BJT的可靠件:BJT应尽量避免靠近发热元件,以保证管壳散热良好。当BJT的耗散功率大于SW时,应加散热器。焊接BJT时,应采用熔点不超过150℃的低熔点焊锡,且电烙铁以60W以卜为宜,焊接时间不超过5,。为防止BJT(MOS管击穿)二次击穿,应尽量避免采用电抗成分过大的负载,并合理选择工作点及工作状态,使之不超过BJT的安全工作区.
    参数
    晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
    放大系数
    直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
    交流放大倍数
    交流放大倍数,也即交流电流放大系数、动态电流放大系数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
    耗散功率
    耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
    最高频率fM
    最高振荡频率是指晶体管的功率增益降为1时所对应的频率。通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
    最大电流
    集电极最大电流(ICM)是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
    最大反向电压
    最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
    集电极——集电极反向击穿电压
    该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。基极—— 基极反向击穿电压该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
    发射极——发射极反向击穿电压
    该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
    集电极——基极之间的反向电流ICBO
    ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
    集电极——发射极之间的反向击穿电流ICEO
    ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好
    功率晶体管的性能。如
    (1)开关晶体管有效芯片面积的增加,
    (2)技术上的简化,
    (3)晶体管的复合——达林顿,
    (4)用于大功率开关的基极驱动技术的进步。
    直接工作在整流380V市电上的晶体管功率开关
    晶体管复合(达林顿)和并联都是有效地增加晶体管开关能力的方法
    在这样的大功率电路中,存在的主要问题是布线。很高的开关速度能在很短的连接线上产生相当高的干扰电压
    晶体管工作原理
    烜芯微专业制造二极管,三极管,MOS管,桥堆20年,工厂直销省20%,1500家电路电器生产企业选用,专业的工程师帮您稳定好每一批产品,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍
    相关阅读